Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3294-3307, 2023.
Article in Chinese | WPRIM | ID: wpr-981467

ABSTRACT

A strategy combining collision cross section(CCS) prediction and quantitative structure-retention relationship(QSRR) model for quinoline and isoquinoline alkaloids was established based on UHPLC-IM-Q-TOF-MS and applied to Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex. The strategy included the following three steps.(1) The molecular features were extracted by the "find features" algorithm.(2) The potential quinoline and isoquinoline alkaloids were screened by filtering the original characteristic ions extracted from Phellodendri Chinensis Cortex and Phellodendri Amurensis Cortex by the established CCS vs m/z prediction interval.(3) According to the retention time of candidate compounds predicted by QSRR model, the chemical constituents were identified in combination with the characteristic fragment ions and pyrolysis law of secondary mass spectrometry. With the strategy, a total of 80 compounds were predicted, and 15 were identified accurately. The strategy is effective for the identification of small analogs of traditional Chinese medicine.


Subject(s)
Chromatography, High Pressure Liquid , Algorithms , Alkaloids , Isoquinolines , Quinolines
2.
Chinese Journal of Analytical Chemistry ; (12): 958-964, 2016.
Article in Chinese | WPRIM | ID: wpr-494363

ABSTRACT

n-Octanol/ water partition coefficients (Kow ) is an important parameter commonly used to explain toxicity, activity and transmembrane of drugs. However, it is difficult to be detected by direct experimental determination. In this work, a set of 29 neutral and acidic analogues of naphthalene and anthraquinone with reliable experimental Kow data was chosen as model compounds for establishing linear relationship between the logarithm of apparent n-octanol/ water partition coefficient (lgKow), and the logarithm of reversed phase-high performance liquid chromatography (RP-HPLC) retention factor of the solutes corresponding to neat aqueous fraction of mobile phase (lgkw ) as the quantitative structure-retention relationship (QSRR) model. Methanol-water mixture was used as mobile phase at various pH, and retention time (tR ) was rectified by a dual-point retention time correction (DP-RTC) in this method. The experiment results indicated that the proposed QSRR model had good correlation coefficient R2 = 0. 974 -0. 976 with satisfactory results of internal and external validation (the cross-validated correlation coefficient R2cv of 0. 970-0. 973, and 1. 4% ≤relative error (RE)≤7. 9% for all the 6 verification compounds). In addition, this QSRR model was compared with linear solvation energy relationship ( LSER) involved in different descriptors of molecular structure, showing no differences. The QSRR model was applied to measure Kow of 11 naphthalenes and anthraquinones, and the predicted data were compared with Shake-flask method (SFM) experimental ones, as well as calculated ones obtained by software. The results suggested that the proposed method for Kow determination in this work was more accurate, simple and fast. To the best of our knowledge, this is the first report on measuring Kow data for these compounds. The proposed strategy provides the possibility in determining Kow of lipophilic components in complex mixture more quickly and accurately by RP-HPLC.

SELECTION OF CITATIONS
SEARCH DETAIL